Copied to
clipboard

G = C24.44D10order 320 = 26·5

2nd non-split extension by C24 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.44D10, C23.9Dic10, C22.94(D4×D5), C23.49(C4×D5), (C22×C4).22D10, (C22×C10).60D4, (C22×C10).10Q8, C10.81(C4⋊D4), C53(C23.7Q8), Dic54(C22⋊C4), (C2×Dic5).227D4, (C22×Dic5)⋊11C4, C23.35(C5⋊D4), C10.15(C22⋊Q8), (C23×Dic5).2C2, C10.10C429C2, C2.1(Dic5⋊D4), C221(C10.D4), (C22×C20).21C22, (C23×C10).25C22, C22.23(C2×Dic10), C23.275(C22×D5), C10.43(C42⋊C2), C22.41(D42D5), (C22×C10).317C23, C2.5(Dic5.14D4), (C22×Dic5).34C22, C2.11(C23.11D10), (C2×C10)⋊4(C4⋊C4), C10.52(C2×C4⋊C4), (C2×C22⋊C4).4D5, (C2×C10).30(C2×Q8), C2.27(D5×C22⋊C4), C22.121(C2×C4×D5), (C2×C10).429(C2×D4), (C2×C10.D4)⋊6C2, (C10×C22⋊C4).5C2, C10.68(C2×C22⋊C4), C2.5(C2×C10.D4), C22.45(C2×C5⋊D4), (C2×C23.D5).4C2, (C2×C10).138(C4○D4), (C2×C10).204(C22×C4), (C22×C10).113(C2×C4), (C2×Dic5).147(C2×C4), SmallGroup(320,569)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.44D10
C1C5C10C2×C10C22×C10C22×Dic5C23×Dic5 — C24.44D10
C5C2×C10 — C24.44D10
C1C23C2×C22⋊C4

Generators and relations for C24.44D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=f2=b, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >

Subgroups: 734 in 234 conjugacy classes, 87 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C22×C10, C22×C10, C23.7Q8, C10.D4, C23.D5, C5×C22⋊C4, C22×Dic5, C22×Dic5, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C10.D4, C2×C23.D5, C10×C22⋊C4, C23×Dic5, C24.44D10
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, D10, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, Dic10, C4×D5, C5⋊D4, C22×D5, C23.7Q8, C10.D4, C2×Dic10, C2×C4×D5, D4×D5, D42D5, C2×C5⋊D4, C23.11D10, Dic5.14D4, D5×C22⋊C4, C2×C10.D4, Dic5⋊D4, C24.44D10

Smallest permutation representation of C24.44D10
On 160 points
Generators in S160
(1 11)(2 30)(3 13)(4 32)(5 15)(6 34)(7 17)(8 36)(9 19)(10 38)(12 40)(14 22)(16 24)(18 26)(20 28)(21 31)(23 33)(25 35)(27 37)(29 39)(41 51)(42 62)(43 53)(44 64)(45 55)(46 66)(47 57)(48 68)(49 59)(50 70)(52 72)(54 74)(56 76)(58 78)(60 80)(61 71)(63 73)(65 75)(67 77)(69 79)(81 112)(82 92)(83 114)(84 94)(85 116)(86 96)(87 118)(88 98)(89 120)(90 100)(91 102)(93 104)(95 106)(97 108)(99 110)(101 111)(103 113)(105 115)(107 117)(109 119)(121 131)(122 147)(123 133)(124 149)(125 135)(126 151)(127 137)(128 153)(129 139)(130 155)(132 157)(134 159)(136 141)(138 143)(140 145)(142 152)(144 154)(146 156)(148 158)(150 160)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 59)(2 60)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(81 141)(82 142)(83 143)(84 144)(85 145)(86 146)(87 147)(88 148)(89 149)(90 150)(91 151)(92 152)(93 153)(94 154)(95 155)(96 156)(97 157)(98 158)(99 159)(100 160)(101 125)(102 126)(103 127)(104 128)(105 129)(106 130)(107 131)(108 132)(109 133)(110 134)(111 135)(112 136)(113 137)(114 138)(115 139)(116 140)(117 121)(118 122)(119 123)(120 124)
(1 39)(2 40)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)(81 102)(82 103)(83 104)(84 105)(85 106)(86 107)(87 108)(88 109)(89 110)(90 111)(91 112)(92 113)(93 114)(94 115)(95 116)(96 117)(97 118)(98 119)(99 120)(100 101)(121 156)(122 157)(123 158)(124 159)(125 160)(126 141)(127 142)(128 143)(129 144)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)(137 152)(138 153)(139 154)(140 155)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 81 11 91)(2 150 12 160)(3 99 13 89)(4 148 14 158)(5 97 15 87)(6 146 16 156)(7 95 17 85)(8 144 18 154)(9 93 19 83)(10 142 20 152)(21 120 31 110)(22 133 32 123)(23 118 33 108)(24 131 34 121)(25 116 35 106)(26 129 36 139)(27 114 37 104)(28 127 38 137)(29 112 39 102)(30 125 40 135)(41 159 51 149)(42 88 52 98)(43 157 53 147)(44 86 54 96)(45 155 55 145)(46 84 56 94)(47 153 57 143)(48 82 58 92)(49 151 59 141)(50 100 60 90)(61 134 71 124)(62 119 72 109)(63 132 73 122)(64 117 74 107)(65 130 75 140)(66 115 76 105)(67 128 77 138)(68 113 78 103)(69 126 79 136)(70 111 80 101)

G:=sub<Sym(160)| (1,11)(2,30)(3,13)(4,32)(5,15)(6,34)(7,17)(8,36)(9,19)(10,38)(12,40)(14,22)(16,24)(18,26)(20,28)(21,31)(23,33)(25,35)(27,37)(29,39)(41,51)(42,62)(43,53)(44,64)(45,55)(46,66)(47,57)(48,68)(49,59)(50,70)(52,72)(54,74)(56,76)(58,78)(60,80)(61,71)(63,73)(65,75)(67,77)(69,79)(81,112)(82,92)(83,114)(84,94)(85,116)(86,96)(87,118)(88,98)(89,120)(90,100)(91,102)(93,104)(95,106)(97,108)(99,110)(101,111)(103,113)(105,115)(107,117)(109,119)(121,131)(122,147)(123,133)(124,149)(125,135)(126,151)(127,137)(128,153)(129,139)(130,155)(132,157)(134,159)(136,141)(138,143)(140,145)(142,152)(144,154)(146,156)(148,158)(150,160), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,59)(2,60)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,125)(102,126)(103,127)(104,128)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,137)(114,138)(115,139)(116,140)(117,121)(118,122)(119,123)(120,124), (1,39)(2,40)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(81,102)(82,103)(83,104)(84,105)(85,106)(86,107)(87,108)(88,109)(89,110)(90,111)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,101)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,11,91)(2,150,12,160)(3,99,13,89)(4,148,14,158)(5,97,15,87)(6,146,16,156)(7,95,17,85)(8,144,18,154)(9,93,19,83)(10,142,20,152)(21,120,31,110)(22,133,32,123)(23,118,33,108)(24,131,34,121)(25,116,35,106)(26,129,36,139)(27,114,37,104)(28,127,38,137)(29,112,39,102)(30,125,40,135)(41,159,51,149)(42,88,52,98)(43,157,53,147)(44,86,54,96)(45,155,55,145)(46,84,56,94)(47,153,57,143)(48,82,58,92)(49,151,59,141)(50,100,60,90)(61,134,71,124)(62,119,72,109)(63,132,73,122)(64,117,74,107)(65,130,75,140)(66,115,76,105)(67,128,77,138)(68,113,78,103)(69,126,79,136)(70,111,80,101)>;

G:=Group( (1,11)(2,30)(3,13)(4,32)(5,15)(6,34)(7,17)(8,36)(9,19)(10,38)(12,40)(14,22)(16,24)(18,26)(20,28)(21,31)(23,33)(25,35)(27,37)(29,39)(41,51)(42,62)(43,53)(44,64)(45,55)(46,66)(47,57)(48,68)(49,59)(50,70)(52,72)(54,74)(56,76)(58,78)(60,80)(61,71)(63,73)(65,75)(67,77)(69,79)(81,112)(82,92)(83,114)(84,94)(85,116)(86,96)(87,118)(88,98)(89,120)(90,100)(91,102)(93,104)(95,106)(97,108)(99,110)(101,111)(103,113)(105,115)(107,117)(109,119)(121,131)(122,147)(123,133)(124,149)(125,135)(126,151)(127,137)(128,153)(129,139)(130,155)(132,157)(134,159)(136,141)(138,143)(140,145)(142,152)(144,154)(146,156)(148,158)(150,160), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,59)(2,60)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,125)(102,126)(103,127)(104,128)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)(113,137)(114,138)(115,139)(116,140)(117,121)(118,122)(119,123)(120,124), (1,39)(2,40)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(81,102)(82,103)(83,104)(84,105)(85,106)(86,107)(87,108)(88,109)(89,110)(90,111)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,101)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,81,11,91)(2,150,12,160)(3,99,13,89)(4,148,14,158)(5,97,15,87)(6,146,16,156)(7,95,17,85)(8,144,18,154)(9,93,19,83)(10,142,20,152)(21,120,31,110)(22,133,32,123)(23,118,33,108)(24,131,34,121)(25,116,35,106)(26,129,36,139)(27,114,37,104)(28,127,38,137)(29,112,39,102)(30,125,40,135)(41,159,51,149)(42,88,52,98)(43,157,53,147)(44,86,54,96)(45,155,55,145)(46,84,56,94)(47,153,57,143)(48,82,58,92)(49,151,59,141)(50,100,60,90)(61,134,71,124)(62,119,72,109)(63,132,73,122)(64,117,74,107)(65,130,75,140)(66,115,76,105)(67,128,77,138)(68,113,78,103)(69,126,79,136)(70,111,80,101) );

G=PermutationGroup([[(1,11),(2,30),(3,13),(4,32),(5,15),(6,34),(7,17),(8,36),(9,19),(10,38),(12,40),(14,22),(16,24),(18,26),(20,28),(21,31),(23,33),(25,35),(27,37),(29,39),(41,51),(42,62),(43,53),(44,64),(45,55),(46,66),(47,57),(48,68),(49,59),(50,70),(52,72),(54,74),(56,76),(58,78),(60,80),(61,71),(63,73),(65,75),(67,77),(69,79),(81,112),(82,92),(83,114),(84,94),(85,116),(86,96),(87,118),(88,98),(89,120),(90,100),(91,102),(93,104),(95,106),(97,108),(99,110),(101,111),(103,113),(105,115),(107,117),(109,119),(121,131),(122,147),(123,133),(124,149),(125,135),(126,151),(127,137),(128,153),(129,139),(130,155),(132,157),(134,159),(136,141),(138,143),(140,145),(142,152),(144,154),(146,156),(148,158),(150,160)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,59),(2,60),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(81,141),(82,142),(83,143),(84,144),(85,145),(86,146),(87,147),(88,148),(89,149),(90,150),(91,151),(92,152),(93,153),(94,154),(95,155),(96,156),(97,157),(98,158),(99,159),(100,160),(101,125),(102,126),(103,127),(104,128),(105,129),(106,130),(107,131),(108,132),(109,133),(110,134),(111,135),(112,136),(113,137),(114,138),(115,139),(116,140),(117,121),(118,122),(119,123),(120,124)], [(1,39),(2,40),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70),(81,102),(82,103),(83,104),(84,105),(85,106),(86,107),(87,108),(88,109),(89,110),(90,111),(91,112),(92,113),(93,114),(94,115),(95,116),(96,117),(97,118),(98,119),(99,120),(100,101),(121,156),(122,157),(123,158),(124,159),(125,160),(126,141),(127,142),(128,143),(129,144),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151),(137,152),(138,153),(139,154),(140,155)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,81,11,91),(2,150,12,160),(3,99,13,89),(4,148,14,158),(5,97,15,87),(6,146,16,156),(7,95,17,85),(8,144,18,154),(9,93,19,83),(10,142,20,152),(21,120,31,110),(22,133,32,123),(23,118,33,108),(24,131,34,121),(25,116,35,106),(26,129,36,139),(27,114,37,104),(28,127,38,137),(29,112,39,102),(30,125,40,135),(41,159,51,149),(42,88,52,98),(43,157,53,147),(44,86,54,96),(45,155,55,145),(46,84,56,94),(47,153,57,143),(48,82,58,92),(49,151,59,141),(50,100,60,90),(61,134,71,124),(62,119,72,109),(63,132,73,122),(64,117,74,107),(65,130,75,140),(66,115,76,105),(67,128,77,138),(68,113,78,103),(69,126,79,136),(70,111,80,101)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P5A5B10A···10N10O···10V20A···20P
order12···2222244444···444445510···1010···1020···20
size11···12222444410···1020202020222···24···44···4

68 irreducible representations

dim1111111222222222244
type++++++++-+++-+-
imageC1C2C2C2C2C2C4D4D4Q8D5C4○D4D10D10Dic10C4×D5C5⋊D4D4×D5D42D5
kernelC24.44D10C10.10C42C2×C10.D4C2×C23.D5C10×C22⋊C4C23×Dic5C22×Dic5C2×Dic5C22×C10C22×C10C2×C22⋊C4C2×C10C22×C4C24C23C23C23C22C22
# reps1221118422244288844

Matrix representation of C24.44D10 in GL5(𝔽41)

10000
01000
004000
00010
00001
,
400000
01000
00100
00010
00001
,
10000
040000
004000
000400
000040
,
10000
040000
004000
00010
00001
,
320000
00100
01000
00034
0002040
,
90000
003200
09000
00078
0003534

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[32,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,3,20,0,0,0,4,40],[9,0,0,0,0,0,0,9,0,0,0,32,0,0,0,0,0,0,7,35,0,0,0,8,34] >;

C24.44D10 in GAP, Magma, Sage, TeX

C_2^4._{44}D_{10}
% in TeX

G:=Group("C2^4.44D10");
// GroupNames label

G:=SmallGroup(320,569);
// by ID

G=gap.SmallGroup(320,569);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,422,387,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations

׿
×
𝔽